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Abstract 

Subdomain partitioning of n-fold fields associated with S~-scalar invariants of 
Rota-Cayley algebra and enumerative combinatorics are shown to provide direct access 
to the hierarchical substructure (inventory) of higher identical spin clusters. Such lexical 
methods based on p-tuples are especially valuable in treating higher li spin cluster bases. 
On examining dimensionality criteria, in the context of inner tensor product (ITP) 
algebra, they clarify the nature of such spin bases under SO(3) x S, dualities involving 
extended symmetric groups and their related .5, $ G subduced symmetries for 5 < n < 7 
in the context of multiquantum NMR. using simple combinatorial arguments. The present 
work reports the conceptual aspects of monocluster substructures over Hilbert space 
underlying our recent papers on bicluster spin dynamics over S.-partitioned Liouville 
space. The substructure of [2D],(S,) spin systems over {[;t.]} sets derived here may 

be utilized in direct product subsets {[~]}q pertinent to the partitioned Liouvillians 
describing the spin dynamics of [llBD]2- and [llBD]72- cage ions. 

1. Introduction 

Scalar invariants of Cayley algebra over an n-foldfield [1] may be written 
in terms of combinatorial p-tuples,  or "generalized (lexical) wordlengths" (GWL), 
based on the enumerative combinatoricals [2] of our earlier conceptual discussions 
[3-5]. These provide powerful tools with which to examine the substructure of a 
variety of spin clusters under the symmetric group .5.. In addition to $2, .53, and 54 
spin problems, application of these ideas to the higher-n .5. groups is of value in 
the context of clusters and molecular cage ions; however, any discussion of n > 5 
fold spin clusters necessarily requires a consideration of .5. $ G subduction to yield 
the irreducible representations (irreps) of some subgroup of the pertinent symmetric 
group. In the context of multiquantum NMR (MQ-NMR) of cage-cluster ions 
constituting bicluster spin systems, the mapping associated with subduction allows 
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us to consider the spin cluster systems [AX]n(Sn) for n = 6, 7 as models f o r  [llBH]2- 
ions [4,5]. Within dual subduced symmetry irreps over partitioned {Ikqv[~]))} 
operator bases of Liouville space [3] associated with the quantum Liouville equation, 
factoriza-tion of the Liouvillian of the full spin problem into subproblems of reduced 
order becomes possible and a motivation for the present line of enquiry. 

For I i > 1 clusters in the context of conventional Hilbert spin space, the 
simple directness of the combinatorial method over n-fold lexical fields has special 
value when compared to earlier Racah methods [6,7] of treating dual irreps under 
SO(3) × Sn duality associated with higher identical spins. This suggests that our 
intermediate implicit results, as derived in the course of our examination of the 
Liouville space substructure of two (11B)borohydride MQ-NMR problems [4], 
deserve to be presented in their own right. 

The present note summarizes the application of p-tuples, i.e. lexical words 
over Sn-fields (referred to as number partitions in the mathematical literature) for 
n < 7 monoclusters as a form of hierarchical model, whose individual components 
introduce convenient lexical labelling comparable to the physical models under the 
class algebra of the subgroup associated with subduction. Hence, the associated 
5,~---) 5~ .1. G mappings specify the irrep substructure over Hilbert space derived 
from [A]~ i = 1~ clusters. However, it is the properties of the p-tuple or lexical GWL 
under the general 5, symmetric group within Rota's view of Cayley algebra over 
an n-fold field [1] that constitutes the essence of the method adopted here. 

Prior to embarking on the essentials of the presentation, some mention of the 
wider value of spin symmetry in contexts other than MQ-NMR may be helpful. In 
particular, knowledge of the irreps associated with the tetrahedral perdeutero-ions 
X-d4 [8, 9] or of octahedral cations [10, 11 ], such as  (laN-d3)6M+, is strongly pertinent 
to quantum rotational tunnelling [12] exhibited by molecular solids [13], since the 
physical processes resulting in spin conversion are inherently spin permutation 
under the symmetry group. Additional aspects of quantum rotational tunnelling in 
collinear bis-triadic C H  3 o r  C D  3 systems [14] may be found in the recent work of  
Clough [15] on topological phases, and of Fillaux and Carlile [16] on the sin- 
Gordon-like behaviour of one-dimensionally ordered solids. Our understanding of 
low temperature models of quantum rotational phenomena arises from studies of  
both NMR and spin-dependent neutron scattering phenomena. 

The non-simple reducibility (NSR) of SO(3) x S, spin spaces associated with 
I i > 1 is in contrast to the induced-symmetry properties inherent under the SU2 x 5,, 
groups discussed by Coleman [17], but presents no problem in deriving irreducible 
representations (irreps) under the group for the modest n << 12 used here. Dimensionality 
arguments and other criteria are invoked in deriving the expansion over the {[~]} set 
of the p < (2I i + 1)-tuple as a mathematical model. In addition, the S,-inner tensor 
products (ITP), as a part of the group algebra [ 18], allow one some insight into which 
[&] components of  the spin space and -tuple are multiple, or zero, elements of the 
field for I i > 1/2. It is notable that the combinatorial aspects of lexical hierarchies 
take on greater structure as  I i increases [3] for any n-fold [A], spin cluster. 
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2. Outline of method and notation 

To orientate the reader, we start with the rather simple p-tuples of Sn for n < 4 
before considering [A]5(55), [A]6($6), and [A]7($7) spin-one cluster problems. We 
stress throughout various mapping aspects for p < 3 -tuples defining these clusters, 
where they arise from a hierarchical inspection process under the constraint imposed 
by z-projection, or M-weight, labelling of the subspace, as outlined in ref. [3]; the 
notation of the second paper of ref. [3] is retained here. Thus, the p term implies 
that the number of subfields is p and that each contains a set of local identical labels 
into which the total Sn-Cayley field is subdivided; the corresponding -tuples, lexical 
wordlengths, are denoted by :mr: or :mrr': for p < 2, 3, respectively, where these 
GWL span (Q) the n-fold field associated with Cayley algebra and readily map 
(denoted by conventional --->) onto the irreps of the pertinent S, group. Discussion 
of the lexical model invariances under cycle or class operators of the subgroup [4] 
leads one directly to the subduced 5~ .1. G irreps. 

Additional notational points concern the use o f / . . / f o r  group order, or irrep 
character Z[, zl (degeneracy), and n (M) for the subdimensionalities of a specific M 
spin cluster subspace, while {.. } braces describe (corresponding) set(s) of -tuples 
or irreps, frequently in order from highest M weights. Finally, we stress our use of 
unit (column) vectors containing the lexical -tuples or S,,-irreps (shown as ~6), or 
subgroup irreps (denoted F')  in either dictionary {In], I n -  1, 1]..  } order, or (for 
F) conventional order. 

Hence, under .52-.54 spin symmetries the p < 3-tuples, for I i = 1 clusters, map 
onto the Hilbert space irreps [~.](S,) in the following manner: 

:2" ---) [2]; • 12: ---) [21 + [12], (la) 

so that over full {] lMa)}  space under 52 x SO(3), the total subdimensionalities 
n2[zl for M = 2, 1, 0, respectively, span 

ny.tz~ V {1, 2, 3}, (lb) 

yielding over a (2I i + 1) n = 3n-fold space of the total spin irrep for F (/; = 1), 

F = 6121 + 3112]. (lc) 

Likewise for [A]3(53) (t;= 11, mappings from GWL(S3) take the form 

• 3"--> [31; "21" ---> [3] + [21] (2) 

within the scheme 

{ : 3 : ;  "21"; 2 : 2 1 : ;  "13:+'3  • } 

Q {[3]; [31 + [211; 2[3] + 2121]; 2131 + 21211 + [131} (3) 
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over M = 3 (down to 0) subspaces having subdimensionalities 1, 3, 6, and 7, within 
a 27-fold dimensional total spin-one space under SO(3)× ,53. 

The [A1{4/i= 1)(S4) cluster spans a 34 = 81-fold total spin space with { 1, 4, 10, 16, 
and 19} subdimensionalities in the positive M domain as determined by the 3- 
tuple (54) properties, 

:22:  - +  [4]+  [22] + [31], 

:212: --+ [41 + [22 ] + [2121 + 2131] (4) 

within the lexical word structure of M space, 

{ : 4 : ,  :31 : ,  :22: + : 3 1 : ,  :212: + : 3 1 : ,  :4: + :212: + :22: }. (5) 

Hence, one obtains the irreps over 4 > M > 0 subspaces as a column vector, 

{F(S4)}  M = 

[41 

[4] + [311 

2141 + [221 + 2131] 

2[4] + [22 ] + [2121 + 3131] 

3[4] +2122 ] + [ 2 1 2  ]+3131] 

(6) 

Clearly, the remaining GWL(54), on the basis of dimensionality arguments, maps 
onto the following irreps: 

: 14: --+ [4] + [14] + 2[22 ] + 31212 ] + [31]. (7) 

However, this is a p < 4-tuple, only needed in treating ! i >_ 3/2 cluster problems. 
Additional higher I i clusters irreps over ( M I - M 4 )  for high outer M and the corresponding 
Liouville space irreps over ( k l - k 4 )  under Sa for outer q subspaces are summarized 
elsewhere [3]. 

Before discussing the higher-n symmetric group aspects, we noted that general 
ZE invariances may be associated with the mathematical lexical models for wordlengths 
: m r : ,  :mrr ' :  . . . . .  i.e. GWLs of  specific p (i.e. for number of subfields of GWL, 
or - tup le ,  within n = m + r ,  o r n = m + r + r ' + . . . )  with 

: m r ' ,  p < 2, ZE - , (8a) 
r 

{ "(:llr=r+rl} 
• m r ' r " : ,  p <  3,=- r" ' (8b) 
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where the notation (r  n) refers to a combinatorial factor a n d / "  . . " / -  ZE. Hence, the 
additional combinatorial factor of eq. (8b) forp  = 3 is a simple product of combinatorial 
binomial factors for binary choices associated with probabilities within the full field 
and from within a residual subfield. For p < 2 GWLs of form : n - r, r : ,  the set of  
corresponding p _< 2 partitions { In1. .  [n - r, r] } is both simple-reducible and complete 
up to the lexical form of  the specific -tuple. 

The only remaining point of  interest in p < 2 words and [&]'s is concerned 
with the question of  mapping onto the subduced symmetry irreps which is best 
considered in terms of  the invariance properties of  the set of  2-tuples in decreasing 
order, { : n : ,  : n - 1, 1 : , . .  : (n/2) (n/2): }, a hierarchical mathematical  model.  

The  analogy in eqs. (8) to the series that eventually gives rise to monomials ,  
and thus to umbral algebra, is of  some mathematical  interest*; however,  specialist 
knowledge of  combinatorics is not needed to utilise the enumerat ive techniques 
outl ined here. Dimensionali ty and consistency relationships building from the lower 
p forms of p- tuples  within the subduced symmetry suffice. 

3. Appl icat ion  to extended  Sn groups,  5 _< n < 7 

A study of  the inner tensor products (ITP) of  the 55-58 groups, utilizing the 
tabulations in ref. [18], is a valuable preliminary to any consideration of p- tuple  
decomposi t ions  under Sn. On writing :£:(Sn,p) for a unit vector over a lexical set 
of  partitions under a prime, e.g. of  p _< 3, the full sets become 

{[5], [411, [32], [3121, [221]} (55, p < 3), 

{[61, [51], [421, [412], [32], [321], [231} (,56, p -< 3), (9) 

{[71, [61], [52], [512], [431, [4211, [3211, [322]} (57, P < 3). 

On the basis of dimensionality, uniqueness and correspondence to invariance properties 
over the hierarchy of  p- tuple  models,  the mapping of  3-tuple of  order / : .. : / onto 
the full p < 3 irreps set under the ,55 group becomes 

: 312: -+ (1, 2, 1, ) ~c-,(55, p < 3), / : . : / = 2 0 ,  (10) 

: 2 2 1 : - - ) ( 1 , 2 , 2 ,  1, 1 ):6, / : .  : / =  30, (11) 

within the invariance properties discussed earlier [19]. The p- tuple  hierarchy, or 
inventory, which gives rise to the SO(3) × 55 bases over outer M of table 1, is given 
in the appendix. 

*See comments of Rota et al. referred to in the concluding paragraph. 
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Table 1 

The SO(3) × $5 hier~chical substructure over outer M 
weight (z-projection) for the fivefold spin-one cluster. 

M [51 [411 [32] [312 ] [2211 u n Z[z] 

/ . . / =  1 / . . / = 4  / . . / = 5  / . . / = 6  / . . / = 5  

5 1 1 

4 1 1 5 

3 2 2 1 15 

2 2 3 2 1 30 

1 3 4 3 1 1 45 

0 3 4 3 2 1 51 

21 24 15 6 3 243 

Under the $6 group, the decompositional mapping proceeds as 

• 412: ---) (1, 2, 1, 1)76(56, p < 3), 

• 321" - - ) (1 ,2 ,2 ,  1, 1, 1)75, 

• 23: - - ) ( 1 , 2 , 3 ,  1, 1,2, 1)76, 

/ ' .  " / =  30, (12) 

/ " .  " / =  60, (13) 

/ " .  • / =  90. (14) 

Thus, the [A](66 = 1) cluster is found to span the irreps of the total space, 

F =  (28, 35, 27, 10, 10, 8, 1)76($6, p < 3 ) ,  (15) 

where the substructure of irreps over M takes the form depicted in table 2. The 
actual lexical word structure of { liMa)} space is derived in a manner similar to 
that summarized [3] for I i < 5 / 2  clusters. The additional mappings which take one 
from [~,] (S,) to F'(Sn $ G) subduced symmetry for 56, $7 are discussed in ref. [4]; 
they are given in an appendix to complete our statement of mapping properties 
under these spin symmetries. 

For the .57 group, similar inner tensor product consideration lead one to map 
the GWLs onto the irrep spin space within 

:512: ---)(1,2, 1, 1)z6(ST, p < 3), (16) 

:421" ---) (1, 2, 2, 1, 1, 1)76, (17) 

"321 • ---)(1,2,2,  1,2, 1, 1)76, (18) 

• 322: ---) (1, 2, 3, 1, 2, 2, 1, 1)76, (19) 

over a set of  dimensionalities { / ' . .  "/} of  42, 105, 140 and 210, respectively. 
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Table 2 

The parti t ional substructure over M subspaces associated with duality of  the 
[A](6 ti = 1)(SO(3) x .56) spin cluster, together with their subdimensionality over M and the 
principal characters z l  .'-['tl of the individual partitions under the group, denoted / [ . . ] / .  

M [6] [511 [42] [4121 [32 ] [3211 [23 ] u n Ztz] 

I . . l = l  / . . / = 5  / . . / = 9  / . . / = 1 0  I . . 1=5  / . . / = 1 6  / . . / = 5  

6 1 1 

5 1 1 6 

4 2 2 1 21 

3 2 3 2 1 1 50 

2 3 4 4 1 1 1 90 

1 3 5 4 2 2 2 126 

0 4 5 5 2 2 2 1 141 

28 35 27 10 10 8 1 729 

Hence, the 2187-fold spin space o f  [A]7(,$7) (11= 1) spans the irrep hierarchy 
over M shown in table 3 within the appropriate detailed lexical structures of the 
second paper of ref. [4]; as a consequence of the above mappings, the total irreps 
for the monocluster [A]7(57)  span 

{36, 47, 43, 15, 24, 15, 6, 3} ~(57, P < 3), (20) 

which in turn map onto the 57,1, D5 subduced symmetry (unit) irreps F-' to give 

F '  = (270, 189, 432, 432)F'. (21) 

Equations (9)-(20) bring together aspects of p-tuples underlying various recent 
papers by the present authors [4,19] on bicluster [AX]n and other spin cluster 
systems. 

Now we are in a position to derive the full spin irreps for the components 
of the high temperature model of (14NH3)6-M hexamino-metal cations as 

((28, 35, 27, 10, 10, 8, 1)~($6, p < 3)) ® F ( ® ( ~  t'= 1/2)($3))6), (22) 

where the first term of the direct product is associated with aspects of the I i = 1, 
14N spin cluster. At lower temperatures (20-170 K) there may be a dynamical 
aspect involved as well as tunnelling processes, requiring the introduction of the 
general wreath product spin symmetry [20], as typified by the {(NH)3}n clusters 
considered recently by Balasubramanian [21]. 

Caution is necessary in applying symmetrization techniques to bases pertaining 
to certain types of NMR experiments such as commonly utilised in studying tunnelling 
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Table 3 

The corresponding dual partitional hierarchy and its subdimension- 
alities over M subspaces of the [A]7 identical spin-one cluster. 

M [7] [61] [52] [512 ] [43] [421] [321] [322 ] n~[;q 

/ . . / = 1  / . . / = 6  / . . / = 1 4  / . . / = 1 5  / . . / = 1 4  / , . / = 3 5  / . . / = 2 1  / . . / = 2 1  

7 1 1 

6 1 1 7 

5 2 2 1 28 

4 2 3 2 1 1 77 

3 3 4 4 1 2 1 161 

2 3 5 5 2 3 2 1 266 

1 4 6 6 2 4 3 1 1 357 

0 4 6 6 3 4 3 2 1 393 

36 47 43 15 24 15 6 3 2197 

processes; the Liouvillians [H, ]_ involving dominant dipolar, double resonance, 
zero magnetic field terms, or field cycling techniques, generally do not meet the 
requisite criteria to be stationary constants of motion.* 

4. Concluding remarks 

To summarize, it has been shown by analyzing the combinatorial properties 
of p < 3 generalized lexical wordlengths and invoking mapping from the GWLs 
onto the .5,, irrep set that there are direct methods to establish the dual irreps of 
identical spin-one clusters over M subspaces. For lower gn groups of n << 12, it is 
not necessary to invoke Racah methods, provided the group algebra or the inner 
tensor products are known; such ITPs adequately determine the duality of the non- 
simple reducible space for [A]n(S~) Cti) clusters. 

The present work on higher spin clusters, essentially I i = 1 clusters, exhibits 
a marked contrast to the nature of spin-l/2 clusters, whose simple reducibility (SR) 
over operator bases of Liouville space and mapping under Sn × SU2 arise from all 
the distinct v ' s  within the {Dk(LT) x r'tzl(v)} dual irreps [22], for which v takes 
forms involving (111.. 11), ({ 111.011 }) . . . . .  ; the analogous ki < 2 recoupling 
span (222..22), ({222. 122}), ({222.022}),., ({222.011 }) . . . . . .  for instance, before 
considering the NSR aspect of such bases. 

*For a discussion of criteria under which the Hamiltonian belongs to the [n] ---) A1 representations and 
constitutes a constant of motion, the reader is referred to Corio [30]. However, the use of coherent 
superpositional opertaor bases, derived analogously to symmetrized tensor bases, may be mathematically 
convenient, even where the stationary H is not a constant of motion [31,32]. 
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Knowledge of the (scalar) invariants (or constants of motion) under a generalized 
group, such as SU(n) for the single-spin case [23] and under S,, for clusters of such 
SU(n) spins, provides the more fundamental insight into the nature of spin systems. 
Explicit commutator tables for single-spin problems over Liouville space, i.e. of the 
form given in ref. [24] and utilized by Reddy and Narasimhan [25], provide little 
additional insight since their properties are inherent in the invariant algebra under 
SU(n) generators [23]; the spin dynamics in such Cartesian tensor basis formulations 
[24,25] are derivable by inspection from suitable expectation values of the more 
general SO(3) density matrix, as discussed by Santuary and Halstead [26]. 

Further physical science applications of -tuple number partitions may be 
found in the work of Mekjian and Lee [27], which appeared whilst the present paper 
was being reviewed, or in the text by Abhyanker [28]. For our final comments, we 
return to the masterful mathematical writings on combinatorics of Rota et al. [29] 
and of Berge [2]. The former point out the existence of an interesting relationship 
between combinatorics in the form of monomials - maximal product binomial 
functions - and the umbrial calculus of pattern algebra. Berge, in an illuminating 
and highly readable classic, recalls various interesting historical aspects to the 
origins of combinatorics. 

Appendix 

The p < 3-tuple inventory for the [A]5(Ii = 1)(55) spin cluster takes the form 

M {: :} {: :}/reordered / : . .  : /  

5 :5: 1 

4 :41: 5 

3 :32: :41: 15 

2 :312: :32: 30 

1 :221: :32:, :41: 45 

0 :221:, :31z: :5: 51 

(A.1) 

For subduction from .55 to ss.l, C4v the [~]'s are associated with the mappings 

[41] ---) A1 + B2+ E, 

[32] ---) A1 + BI+ B2+ E, 

[3121 ---) A2 + B1 + 2E. 

(A.2) 

The corresponding inventory for the analogous [A] 6 spin-one cluster is given 
by the expression 
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1 

0 

0 
{.}M= o 

0 

0 

1 

0 

1 0 

1 1 0 

0 0 1 

0 2 0 

1 0 0 

0 0 1 

0 
1 0 

0 1 

0 2 

1 0 

" :6: 

:51: 

:42: 

:412: 

:32: 

:321: 
1 :23: 

Subduction from 56 

[51] --~ E + T1, 

[42] --* A 1 + E + 2T 2, 

[32 ] - ~ 2 A  2 + T  1, 

with the p = 3 partitions yielding the mappings 

[412] --~ A2 + 2T1 + T2, 

[321] --~ 2E + 2T1 + 2T2, 

[23] --~ 2Al + T2. 

to ,56,[, 0 symmetry proceeds via the mappings 

(A.3) 

(A.4) 

(A.5) 

Under $7, 57,1- Ds, subductions over F' ,  spanning unit set {A1, A2, El, E2} map onto 

[61] --) (1, 1, 1, 1)F',  

[521 --) (2, 0, 3, 3)F ' ,  

[431 --) (1, 1, 3, 3)F ' ,  

whereas the p = 3 partitions map onto 

[512] ---) (0, 3, 3, 3)F ' ,  

[421] --) (4, 3, 7, 7)F ' ,  

[3211 --> (1, 4, 4, 4)F ' ,  

[322] --) (4, 1, 4, 4)F ' .  

For sevenfold 
table 1 of the 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

spin-one cluster, the inventory over {JIM. )}M follows the form of 
second paper of  ref. [4]. 
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Note added in proof 

A recent study [33] of Casimir invariants provides a rather concise statement 
of the importance of the Racah chain for NMR problems which stresses the nature 
of  seniority for dual unitary algebras. Certain fundamental distinctions in the nature 
of reduced matrix elements associated with NMR spin dualities, i.e. from the accepted 
forms of  Racah algebra for shell models in other areas of  physics, are stressed in 
this work. Such extensions to the application of group theory in NMR stem from 
the realisation of the underlying role of  certain wreath-product aspects of finite 
symmetries applied to NMR. In addition, the higher unitary algebras, SU(6) x S,,, 
(and above) are discussed. 
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